
Making High-Quality
Real-Time Image
Processing Possible
Today’s powerful image processing
technology enables the automation of a
wide range of inspection and visualiza-
tion tasks in many commercial mar-
kets.The processing of large and often
complex images requires tremendous
computational horsepower to quickly
and efficiently handle the number of
tasks associated with image process-
ing, including:

• Acquisition of data from a wide variety
of sensors with different formats,
input rates, resolutions, and synchro-
nization parameters at various fre-
quencies, including infrared, x-ray,
and visible light.

• Processing of a large volume of contin-
uous data while performing complex
algorithms that may vary from frame-
to-frame.

• Storage and retrieval of image files in
a variety of resolutions and formats.

• Display of large images at real-time
rates in various formats, including
gray scale, true color, pseudo color,
and stereo.

• Analysis functions including real time
feature extraction and object (blob)
recognition capabilities.

The greatest challenge in image pro-
cessing has been to develop systems
that can handle all of these requirements
with flexibility and precision, in real-time.
To that end, Datacube has been a pio-
neer in the development of pipeline pro-
cessing — a software architecture that
provides exceptionally fast manipulation of
large images where others have failed.

Pipeline Processing Surpasses
Industry Standard DSP Platforms
In many image processing applications,
the time in which data must be
processed is fixed, and the success of
the image processing system is depen-
dent upon its ability to deliver results
within the given time limits. Pipeline pro-
cessing offers the advantage of deter-
minism—the time it will take the pipeline
processor to complete the operations is
known in advance, before system devel-
opment even begins. With general pur-
pose processors, the time it will take to

perform operations can be estimated,
but will not be known precisely until after
the system development has been com-
pleted.

For example, a given imaging algorithm
may include four separate operations.
Imagine that on a DSP-based system,
these operations can typically be com-
pleted in 4, 7, 8, and 6 ms, respectively.
Logically then, the total processing time
could be calculated to be 25 ms, the
sum of the time required for each of the
individual operations. However, within a
DSP-based architecture, the presence
of some operations in an algorithm
effects the processing time of others.
Therefore, the actual time it takes for
any application to be executed on a
DSP-based system can not be calculat-
ed until the program has been complet-
ed and compiled, and could significantly
more than 25 ms.

On a pipeline image processing system,
even if each of the four operations took 8

ms, the total processing time would only
be 8 ms after an initial latency period,
because pipeline systems process
images through an assembly line-like
pipe with operations performed concur-
rently.

Here’s how it works: Each step in the
illustration below represents another tick
of the system clock (in a 40 MHz
pipeline, that equals 25 ns). Pixels enter
the system one at a time, and with each
tick of the clock (every 25 ns), they move
from one operation to the next.The indi-
vidual pixels follow each other, resulting
in a steady stream of output as soon as
the first pixel completes its journey
through the entire pipeline.

CPU- and DSP-based platforms must
make up for their slower processing
times by skipping frames which may
result in missed information, or by
adding processors which adds both
expense and overhead to the total sys-
tem.

Pipeline Processing Illustrated

D A T A C U B E

Like an assembly line, data in a pipeline processing system passes through a series of specialized
computational elements that are connected sequentially. In addition, these elements can be recon-

figured on the fly to accommodate countless numbers of application-specific processing needs.

Comparison of
Popular Processor Speeds
The application depicted by the high-
ly simplified diagram to the right pro-
vides gain and offset correction, plus
edge enhancement using a Sobel fil-
ter for real-time analog video. The
benchmarks listed illustrate how
much faster pipeline processing is
than two of its most common alter-
natives, the Pentium CPU and C80
DSP. The times provided are for
operations performed on 512x512x8-
bit images. Note that while certain
individual operations may be per-
formed more quickly on a CPU- or
DSP-based platform, the total pro-
cessing time of a pipeline image pro-
cessing system can’t be beat.

CPU* DSP* Pipeline
@40Mhz*

A. Summation 1: 10 ms 3 ms 7 ms
B. Multiplication: 10 ms 3 ms 7 ms
C. Convolution 1: 48 ms 10 ms 7 ms
D. Convolution 2: 48 ms 10 ms 7 ms
E. Lookup Table: 7 ms 2 ms 7 ms
F. Summation 2: 10 ms 3 ms 7 ms

Total: 133 ms 31 ms 7 ms

Other Significant Benchmark
Comparisons:

CPU* DSP* Pipeline
@40Mhz*

8x8 Convolution:336 ms 70 ms 7 ms

* Times provided are rounded to the near-
est ms.

So you can see, the image processing
system based on Datacube pipeline
processing technology far outperforms
the CPU- and DSP-based options —

both on key individual operations and
more importantly, on overall system
performance.

The Pipeline Processing
Price/Performance Advantage
Image processing at frame rates
requires the ability to handle a contin-
uous stream of a very large volume of
pixels. Pipeline processing does this
more effectively than any other archi-
tecture on the market.

With Datacube’s pipeline processors,
a stream of video data is piped
through a configurable series of spe-
cialized computational elements. The
on-board processing elements are
connected via very fast, high-band-
width, non-blocking crosspoint switch-
es to create pipelines. All of these ele-
ments operate simultaneously to pro-
duce a steady stream of processed
image data. Multiple pipelines may be
configured to work in parallel, provid-
ing even greater data throughput.

Even the most powerful general pur-
pose CPUs and DSPs cannot begin to
compare to the highly efficient nature
of pipeline processing for many image
processing tasks. The overall through-
put of a system can be many thou-
sands of times faster than traditional
methods, with performances over
10,000 MIPS—approaching super
computer power at a small fraction of
the cost.

Additional Information
For more information about pipeline
processing and the products men-
tioned in this document, please refer
to the following literature available
from Datacube:

ImageFlow Data Sheet
ImageFlow Technical Description
MaxPCI Data Sheet
MaxVideo 250 Data Sheet
Technical Training Data Sheet

Datacube, ImageFlow, MaxPCI, and MaxVideo are
trademarks of Datacube, Inc. All other brand or prod-
uct names are trademarks or registered trademarks of
their respective companies or organizations. All specifi-
cations subject to change without notice.
(11/98) DS0099-1.1

Datacube, Inc. • 300 Rosewood Drive • Danvers, MA 01923 • Voice 978-777-4200 • Fax 978-777-3117 • http://www.datacube.com • info@datacube.com

D A T A C U B E

Pipeline Image Processing CPU/DSP Technology

System Individual pipeline image pro- It is not cost-effective to have
Cost cessors can be implemented multiple processors on a single

with low cost custom silicon board. Also, it may be difficult
devices. or sometimes impossible to

divide tasks between multiple
generalpurpose processors.

Processing Systems are easy to expand by The more processes a CPU- or
Power putting dozens – even hundreds DSP-based system is asked to

of processors on the same board. do,the slower it becomes.

System Datacube pipeline processing Throughput is variable at best,
Throughput guarantees processing rates up and it is difficult to predict per-

to 40 megapixels/second. formancein advance of imple-
mentation.

Development Datacube’s ImageFlow software DSP-based development envi-
Environment provides a time-tested, proven- ronments are dominated by

reliable environment with easy- expensive,exotic compilers,
to-use development tools. linkers and debuggers.

