
ImageFlow
Technical Description

Pipeline Image Processing
with ImageFlow

Datacube, Inc.
300 Rosewood Drive

Danvers, MA 01923
TEL:978-777-4200

FAX: 978-777-3117

Document No. MS0001-2.1
November, 1998

Notice

This document is provided “as is,” for informational purposes only, and with-
out warranties as to the validity or usefulness of the information herein. This
document is provided without any expressed or implied warranties. Because
of the diversity of conditions under which this information could be used, no
warranty of fitness for a particular purpose is offered.

A request for and/or receipt of this document is assumed by Datacube, Inc.
to be an acceptance of the terms and conditions stated herein.

Datacube, ImageFlow, MAXbus, and MaxVideo are trademarks of Datacube,
Inc.

Copyright © 1996, Datacube Inc.
All rights reserved.

Datacube, Inc.
300 Rosewood Drive
Danvers, MA 01923

TEL: 978-777-4200
FAX: 978-777-3117

info@datacube.com
http:\\www.datacube.com

Page ii Pipeline Image Processing with ImageFlow MS0001-2.1

Inside. . .

Introduction .1

Evolution of an Image Processing Architecture 1

Pipeline Image Processing .2

Building Powerful Pipes .5

Architectural Components .5

Structuring ImageFlow Applications .6

Conclusion .11

MS0001-2.1 Pipeline Image Processing with ImageFlow Page iii

MS0001-2.1 Pipeline Image Processing with ImageFlow Page 1

Introduction
At one time, image processing was too complex and too expensive to be
supported by any but the most sophisticated computer systems. Its roots
are in expensive research & development projects like those supported by
the U.S. space program and in defense industries including military surveil-
lance and guidance systems. Just a few decades ago, these high perfor-
mance imaging applications necessitated the computational capabilities and
speed of the world’s most powerful supercomputers. But the growth of the
computer industry over the last few decades made it possible for technolo-
gies like image processing to become both more widespread and afford-
able.

Today, image processing is finding its way into an ever increasing variety of
applications – from assembly line inspection systems in auto parts plants, to
motion detection in surveillance and security systems, to computer-aided
animation in the entertainment industry, and more. The technology success-
fully made the migration from supercomputer to personal workstation. But
with more widespread use come more demands on the technology –
demands for larger bandwidths with faster processing speeds, and more
flexibility yet tighter control.

To meet the needs of its customers in the R&D and defense communities,
Datacube adopted a computer architecture known as “pipeline processing” in
the early 1980’s. Capable of providing exceptionally fast, highly precise
manipulation of large images, this complex technology enabled the automa-
tion of a wide range of inspection and visualization tasks. In 1990, Datacube
introduced the first of its single-board image processing sub-systems and
ImageFlow, a library of C-callable functions for the configuration and control
of multiple, parallel pipelines.

As a broader audience of application developers come to understand the fea-
tures and benefits of Datacube’s pipeline image processing, the technology is
spreading into a growing number of manufacturing, medical, and other pri-
vate-sector applications. This document provides a conceptual overview of a
pipeline processing computer architecture and explains the features and ben-
efits of ImageFlow that make it and exceptional development tool for high per-
formance image processing applications.

The Evolution of an Image Processing Architecture
Most image processing systems use general-purpose architectures com-
posed of a central processing unit (CPU), memory, and a single data bus.
The central processor fetches data from memory, processes it, and stores it
in a buffer, from which it can either be fetched for a second (or third or fourth
or…) process, or output in one form or another (see Figure 1).

These CPU-based computer architectures have been around for a number
of years, developing a strong market base and a broad variety of application
development tools. They’re inexpensive due in large part to high market
demand, and developers find them reliable and relatively easy to under-
stand.

Page 2 Pipeline Image Processing with ImageFlow MS0001-2.1

The CPU-centered processing model is limited, however, in how
quickly it can perform complex processes on large amounts of data.
Also referred to as “Single Instruction, Single Data” (SISD), this type
of architecture is capable of completing only one computation per
cycle or clock tick. The more computations or operations required by
a given algorithm, the greater the delay between the input of data
and the output of a result. The problem is compounded by the vol-
ume of data required by applications like image processing.

In an attempt to decrease this bottleneck, some systems offer varia-
tions of the SISD architecture. For example, the Single Instruction,
Multiple Data (SIMD) architecture includes multiple processors under
the control of one central or master processing unit. Data is broken up
and sent to separate processors which, acting under the direction of a
single control unit, each perform the same operation at the same time
on a subset of data. SIMD architectures offer improved data through-
put over SISD systems, but are still limited in the number or complexi-
ty of operations they are capable of performing.

Multiple Instruction, Multiple Data (MIMD) architectures allow multi-
ple computations to be simultaneously executed on subsets of input
data. They subdivide processing power across a complex network of
interconnected nodes. Input data is segmented and directed to each

of the various nodes, boosting overall data throughput. Each node has the
authority to execute a separate instruction on its own subset of data,
increasing the number of computations that can be executed at a time. While
highly functioning, the drawbacks of such an architecture are obvious: there
is a tremendous amount of overhead associated with segmenting the data
and synchronizing operations.

Pipeline processing has proven to be more effective than any of these
architectures handling high volume, high performance image processing
applications and other data intensive operations that must be executed in
real time. It provides distinct advantages of speed, data throughput, and
flexibility over the more primitive CPU-based architectures.

Pipeline Image Processing
Pipeline processing subdivides processing control
differently — and more effectively — than MIMD sys-
tems. Pipeline processing uses a collection of
sequentially connected, specialized computational
elements. These elements perform operations upon
data as it passes through the pipeline — a process
that is fundamentally different from the
fetch/process/output cycle employed for each byte
handled by general purpose CPUs (see Figure 2).

Datacube hardware and software applies the pipeline
architecture to image processing. A steady stream of
image data is input into the system and piped
through a series of highly specialized, easily recon-
figured computational elements capable of a wide
variety of image processing functions. Because all of
these elements function simultaneously, data never
stops flowing through the system. Output is continu-
ous from the time the first pixel completes its journey
to the last.

MEMORY

CPU

DATA BUS

BUFFER

Figure1: CPU-based
Architecture

MEMORY

PROCESSING
RESOURCE

MEMORY

Figure 2:
Pipeline Architecture

Speed and Efficiency

Consider again the simple CPU-based processing architectures. CPU-
based architectures are capable of issuing only one instruction on one set
of data at a time — a fact that severely limits the architecture’s efficiency
when dealing with complex algorithms. In a highly simplified example, con-
sider what it would take to process an image four pixels high by four pixels
wide. If processing was limited to a single instruction, it would take a total of
16 steps or ticks of the clock — 1 instruction * 16 pixels — to process the
entire image. If processing required the execution of four separate instruc-
tions on each pixel, it would take a total of 64 steps — 4 instructions * 16
pixels. In complex imaging applications, that can lead to a significant delay
in the display or availability of important data.

Because different instructions can be executed on different sets of data
simultaneously, complex algorithms are handled more quickly and efficiently
by pipeline processors. Figure 3 shows how the 16 pixels in our example
image move through a pipeline set up to execute four separate instructions.
The pipeline fills, one pixel at a time, during the first four steps or ticks of the
clock. By the fifth step, however, the first pixel has been completely
processed and is available for display. Each step after that produces another
pixel, and with the 20th step, the entire image has passed through the sys-
tem — in less than one third the number of steps required by the CPU-
based architecture. Add to this the fact that all Datacube hardware has been
optimized to provide the fastest, most accurate performance possible for its
particular image processing task.

DISPLAYING
PIXELS 1 THRU 16

DISPLAYING
PIXEL 1

DISPLAYING
PIXELS 1 THRU 2LATENCY

PIXEL #4

PIXEL #3

PIXEL #2

PIXEL #1

STEP 4

PIXEL #5

PIXEL #4

PIXEL #3

PIXEL #2

STEP 5

PIXEL #6

PIXEL #5

PIXEL #4

PIXEL #3

STEP 6

PIXEL #1

STEP 1

PIXEL #2

PIXEL #1

STEP 2

PIXEL #3

PIXEL #2

PIXEL #1

STEP 3

PIXEL #16

STEP 19

FIRST
OPERATION

SECOND
OPERATION

THIRD
OPERATION

FOURTH
OPERATION

STEP 20

Figure 3: Efficient handling of a complex algorithm by pipeline processing

MS0001-2.1 Pipeline Image Processing with ImageFlow Page 3

Flexibility

Though the details behind pipeline processing’s flexibility are very complex,
the concept is not. As data enters the system, it flows through a series of
memory devices and processing resources, much like water flowing through
a household plumbing system. The flow is controlled by a series of valve-like
gateway elements. Between operations, data is stored in elements called
surface stores, which can be likened to holding tanks.

Just as water can be re-directed with the opening or closing of a valve, the
elements that work together to form a pipeline can be configured and recon-
figured in a seemingly infinite number of combinations. Within each process-
ing device are multiplexers and crosspoint switches which allow data to be
sent through a wide variety of paths. The crosspoint switch is able to make
and/or break these connections “on the fly,” making the pipeline processor a
highly flexible computational architecture well-suited to image processing
operations requiring high throughput. Configured alone or in parallel with
other pipelines, this flexible design provides applications with exactly the
resources they need.

 WATER
SUPPLY

WATER
FILTER

WATER
SOFTENER

HEATER

STORAGE

Memory

Resource
#1

Resource
#2

Memory

Memory

Resource
#1

Resource
#2

Memory

Resource
#1

Memory Memory

Memory Memory

Memory

Resource
#2

Resource
#1

Figure 5: High bandwidth crosspoint switches allow “on the fly” reconfiguration

Figure 4: Household Plumbing Analogy

Page 4 Pipeline Image Processing with ImageFlow MS0001-2.1

MS0001-2.1 Pipeline Image Processing with ImageFlow Page 5

Building Powerful Pipes
How does an application direct data through such a maze of specialized
processors? Like a household plumbing system, pipeline processing sends
a flow of something (data, rather than water) through a set of preconfigured
“pipes.” Both systems need a set of controls to govern the moment-by-
moment activation and flow rate of the system. Household plumbing systems
have storage tanks, valves, and faucets. What controls do far more complex
image processing systems have?

The first generation of Datacube’s pipeline processor cards (1986) was pro-
grammed at the hardware register level. This was a challenging task, but it
was possible because back then, a system typically had only a few hundred
programmable registers. Datacube proceeded to develop several custom
image processing ASICs to implement its second generation of pipeline
processors (1990). The new devices’ thousands of hardware registers creat-
ed a clear need for higher-level programming tools. Datacube developed
ImageFlow to support application development on this highly advanced sec-
ond-generation hardware.

ImageFlow is Datacube’s library of C-callable functions used to set up and
control the flow of image data through software configurable “pipes.” These
pipes are created by connecting some of the many hardware based ele-
ments on Datacube hardware — acquisition devices, processing elements
like multipliers, storage devices, display devices, and more. These devices
act like the valves, tanks, and faucets found in a plumbing system, and code
written in ImageFlow dictates how they’re connected.

While the household plumbing analogy is a useful introduction to pipeline
processing topologies, there are significant differences between plumbing
and the flow of image data through a pipeline system. First, software gate-
ways must be more intelligent than water faucets, because they interpret the
data coming into the system as well as control the flow. They define the for-
mat and transfer parameters of the pixel data, such as the height and width
of the image, timing, what kind of transfer should be used (continuous
stream or one frame), and other attributes of the conversion between a two-
dimensional image and a one-dimensional stream of data. ImageFlow allows
the developer to specify each of these characteristics and many others, pro-
viding complete control over the application.

Another significant difference is that the upstream valve in a plumbing system
has no “knowledge” of the flow requirements at the downstream end, but
instead lets through all the water it can. On the other hand, the upstream
valve or gateway in an ImageFlow-based pipeline processing system is fully
aware of the flow requirements demanded up by the downstream gateway (or
gateways) and adjusts its data flow accordingly. This prevents a back-up of
image data — which could result in the loss of important information.

Architectural Components
ImageFlow recognizes five basic architectural building blocks which can be
used to configure an endless number of pipes, working alone or in parallel,
to solve a wide variety of image processing problems. These basic building
blocks are: surface objects, gateway elements, device objects, pipe objects,
and system objects (see Figure 6).

The system object represents the entire image processing system and
includes all the pipe objects, device objects, gateway elements, and surface
objects used by a particular image processing application. Note that it does
not include a CPU — the system object is composed entirely of image pro-
cessing-specific elements. Exactly which elements are included in a given

Page 6 Pipeline Image Processing with ImageFlow MS0001-2.1

system object is defined in the ImageFlow con-
figuration file.

Device objects are image processing mod-
ules designed to handle a particular task
which might include acquisition or an arith-
metic function. Devices don’t have to be on
the same board to be part of a single system
object — devices may be part of the image
processing motherboard (for example, the AU
or AM device on a MaxVideo 250), daughter-
cards attached to the motherboard
(Datacube’s MaxACQ acquisition modules),
or separate boards connected by data bus
cables to the main processing board. Each
device object is made up of one or more
image processing elements (which may
include surface objects, gateway elements, or
other specialized processing elements).

Surface objects are the two-dimensional “can-
vases” on which pixel data is laid for temporary
storage. They are software defined structures
that define what type of information is stored in

memory and how.

Gateway elements act like valves or faucets controlling the flow of pixel
data into and out of any pipeline. The gateway is the only one of the five
basic ImageFlow components that is not an object but an element; it does
not have to be explicitly declared and created in an application like the
objects.

Pipe objects are one-dimensional pipelines which are put together to form
an image processing application. Pipes include the individual image pro-
cessing elements that actually process pixel data. They frequently pass
through more than one device, and can have multiple sources and/or desti-
nations.

Structuring ImageFlow Applications
Think again of the household plumbing analogy, and the many paths water
might flow through a typical house. As described previously, gateways are sim-
ilar to valves, and data pipes are analogous to water pipes. Surfaces provide
beginning and ending points for each pipe, so the analogy must be expanded
to add water tanks representing surfaces in the plumbing system. Image pro-
cessing devices are represented by individual rooms in the house, and the
system object is represented by the entire house.

Figure 7 depicts an ImageFlow application represented as a house, using
the plumbing analogy for all five of the building blocks described thus far.
This household plumbing model uses many more water tanks than a con-
ventional system would, because in ImageFlow every pipe must begin and
end with a surface (tank). Intermediate buffering tanks/surfaces appear
throughout the data path and each one is attached to a valve or a pair of
valves. The tanks which have a “V” in them represent surfaces on virtual
memory stores, and these have only one valve.

The incoming analog video data is like the water service. The water flows
into the house through the water main and is immediately fed into the

Device
Object

Device Object

Device
Object

XX_XMT

XX_RCV

Device
Objects

Gateway
Elements

Surface
Objects

System
Object

Figure 6: Basic components recognized by ImageFlow

MS0001-2.1 Pipeline Image Processing with ImageFlow Page 7

acquire tank in the front hall, which is analogous to a surface on the Analog
Scanner (AS) device that converts analog data to digital pixel data.

The first pipe in the system runs from the acquire tank to a buffer tank which
is in the living room. This is how a pipe crosses device boundaries in
ImageFlow. This first pipe object is usually called the “acquire pipe.”

The second pipe is a multi-destination pipe that feeds two different tanks in
two different rooms. It forks after it leaves the buffer tank, with one fork going
to another tank in the bathroom, analogous to the view surface on the
Advanced Pipeline Processor (AP) device (a virtual surface used to extract
statistics). The pipe's other fork runs into and through the dining room —
analogous to the Arithmetic Unit (AU) device — but never enters a tank/sur-
face in that room/device. Instead, it passes through heating elements which
raise the temperature of the water, and then crosses a second device
boundary and enters the tank/surface in the pantry (analogous to a surface
store), ending the second pipe. By going through the dining room, the pipe
accesses all the processing elements in that room/device. This whole multi-
destination pipe could be called the “processing pipe,” since it handles most
of the actual image processing. It outputs statistics at the end of one fork
and a processed image at the end of the other fork. An ImageFlow applica-
tion can have many more processing pipes, configured in serial or parallel.

A third pipe goes from the pantry buffer tank to the display tank in the
kitchen, analogous to the DAC surface on an Analog Generator (AG) device,
used to convert the digital pixel data back to analog video. In ImageFlow,
this pipe is typically called the “display pipe.”

There is one point in this model where the plumbing analogy breaks down:
the processing pipe fork in the living room. Water molecules can't be dupli-
cated. Therefore, when the flow of water comes to a fork in the pipe, some of
the water molecules flow into one side and the remaining water molecules
flow into the other side. In an ImageFlow application, however, pixel data can

Heater Element

Living Room
(Surface Store, AM05)

Front Hall
(Acq. Device, AS)

Dining Room
(Arithmentic Unit, AU)

Pantry
(Surface

Store, AM00)

Kitchen (Analog
Generator, AG)

Bathroom (Advanced
Processor, AP)

Acquire Pipe

Display Pipe

Processing
Pipes

Water Main In

V V

V

Acquire Tank Buffer
Tank

Statistics
Tank

Buffer
Tank

Display
Tank

Figure 7: Expanded Household Plumbing Analogy

Page 8 Pipeline Image Processing with ImageFlow MS0001-2.1

be and is duplicated in order to allow all of the image data to flow through
both processing pipes.

Image data is also duplicated between devices, because a surface object
can not be written to and read from at the same time. A duplicate of the sur-
face object (a software defined structure) is created on the same image
memory store (a hardware device that may hold many surface objects). This
duplicate surface object is then used as the beginning of the next pipe. A
duplicate image does not use extra memory resources for its image data,
though it does independently store other attributes such as the surface's
processing rectangle and overlay information. These two surface objects
must share the same memory store on the same device. Both objects must
also have their own handles and creation statements.

Getting Started

ImageFlow configures and manages data transfers and processing elements
on Datacube's family of MaxVideo pipeline processing devices using a vari-
ety of guidelines. For example:

• Pipe objects always end with a gateway that has been attached to a sur-
face, and usually (but not always) begin with a gateway attached to a sur-
face.

• Surface objects are used to move data into and out of memory.

• Each surface must be attached to a gateway before it can be used.

• Exactly which elements are included in a given system object is defined
in the ImageFlow configuration file.

• Collections of elements are given device names or “handles” by which
ImageFlow refers to them.

Computational elements can be quickly reconfigured to perform different
sets of imaging operations. These operations are set up prior to the flow of
data through the pipes. Once the pipeline processor begins operations,
reconfiguration can occur “on-the-fly” between frames, providing exceptional
flexibility and power. ImageFlow significantly simplifies pipeline processing
control, handling complex synchronization and timing issues for the programmer.

The following sections apply these and other basic ImageFlow concepts and
guidelines to a real application.

Acquisition and Display

The acquire and display portion of this application uses the following components:
• One system object
• Four device objects: Analog Sensor (AS), motherboard (AB), Surface

Store (AM), and Analog Generator (AG)
• Four surface objects, named by the user
• Four gateway elements: AS_XMT, AM_RCV, AM_XMT, and AG_RCV
• Two pipe objects: the acquire pipe and the display pipe

Depicted in Figure 8, the acquire pipe brings the data through the crosspoint
to an AM memory surface, which is duplicated to make a new surface. This
surface is the beginning of the display pipe, which comes out of the AM,
through the AB crosspoint, and into the AG for display.

MS0001-2.1 Pipeline Image Processing with ImageFlow Page 9

This application uses no
particular AM memory,
because it demonstrates
how both pipes use the
AB crosspoint device. But
if it were to use memory 0
(AM00) to hold the final
buffer memory surfaces
before going out to the AG
device, it would not have
to go through the cross-
point because AM00 is
“hardwired” to the AG
device. Notice how the dis-
play pipe appears in the
next example application,
which explicitly uses AM00
as the last device before
the AG.

Adding Processing to
the Application

To add a processing pipe to the acquire/display application, the configuration
needs another memory device, AM05, used as the end of the acquire pipe
(see Figure 9). Then pixel data can be routed from AM05 out through the AB

crosspoint and into the AU device,
where some arithmetic processing
is performed. This processing pipe
does not end in the AU device, but
passes through it and out to AM00.
From there, the display pipe goes
straight to the AG for display.

With processing added, the appli-
cation uses the following
ImageFlow components:
• One system object
• Six device objects: AS, AB,

AM05, AM00, AU, and AG
• Six surface objects, named by

the user
• Six gateway elements: AS_XMT,

AM_RCV and AM_XMT on
AM05, AM_RCV and AM_XMT
on AM00, and AG_RCV

• Three pipe objects: the acquire
pipe, the processing pipe, and
the display pipe

In this application, the acquire pipe
brings the data through the AB
crosspoint to a surface created on
AM05, which is duplicated to make
a new surface. The duplicated sur-
face is the beginning of the pro-
cessing pipe, which comes out of
AM05, through the AB crosspoint,
and into the AU for processing,

then back into the AB crosspoint and

AG Device

AG_RCV

AS Device

AS_XMT

AM_XMT

AM_RCV

AM Device

Display Pipe

Acquire Pipe

System Object

Analog
Video
Input

Crosspoint

Duplicate

AS Device

AS_XMT

AM_XMT

AM_RCV

AM05 Device

Acquire Pipe

System Object

Analog
Video
Input

Duplicate

AM_RCV

AM00 Device

Duplicate

AU Device

Processing
Elements

AG Device

AG_RCV

Display Pipe

AM_XMT

Crosspoint

Figure 8: Acquire/Display Application

Figure 9: Processing Added to Acquire/Display Application

Page 10 Pipeline Image Processing with ImageFlow MS0001-2.1

into a surface created on AM00, where the processing pipe ends. That surface
is duplicated, and serves as the beginning of the display pipe, which does not
need to go through the AB crosspoint, but goes directly to the AG for display.

Adding Statistics-Extraction to the Application

With the addition of statistics-extraction, the application is finally an
ImageFlow representation of the household plumbing example shown in
Figure 7. It is similar to the example shown in Figure 9, but the processing
pipe has become a single-source, multi-destination pipe which forks and goes
to both the AU and the AP devices. The end of this fork of the pipe on the AP
is a statistics surface used to generate a histogram or extract and list features
of the image. The application uses the following ImageFlow components, all
shown in Figure 10:
• One system object
• Seven device objects: AS, AB, AM05, AM00, AU, AP, and AG
• Seven surface objects, named by the user
• Seven gateway elements: AS_XMT, AM_RCV and AM_XMT on AM05,

AM_RCV and AM_XMT on AM00, AP_RCV on AP00, and AG_RCV

• Three pipe objects: acquire pipe, multi-destination processing pipe, and dis-
play pipe

AS Device

AS_XMT

AM_XMT

AM_RCV

AM05 Device

Acquire Pipe

System Object

Analog
Video
Input

Duplicate

AM_RCV

AM00 Device

Duplicate

AU Device

Processing
Elements

AG Device

AG_RCV

Display Pipe

AM_XMT

AP Device

AP_RCV
Statistics
Output

Figure 10: ImageFlow Application with Acquisition, Processing, Switching,
Display, and Statistics Output

With these additions, the acquire pipe brings the data through the AB cross-
point to a surface created on AM05, which is duplicated to make a new sur-
face.This surface is the beginning of the multi-destination processing pipe,
which comes out of AM05, into the AB crosspoint, and then forks. One fork
goes into the AP device, where it goes to a view surface used to extract the
statistics data.This data is then passed to a statistics data surface which is
not shown.

The second fork of the processing pipe goes into the AU for processing,
then flows back into the AB crosspoint and finally into a surface created on
AM00, where this fork of the processing pipe ends.That surface is duplicat-
ed, and serves as the beginning of the display pipe, which does not need to
go through the AB crosspoint but goes directly to the AG for display via a
hardwired connection.

Conclusion
The highly advanced pipeline processing architecture provides unmatched
power to meet the challenge of processing digital images at frame rates.
CPU-based architectures can’t compete with the speed and flexibility provid-
ed by specialized image processing hardware from Datacube. ImageFlow
gives developers complete control over this powerful hardware, while at the
same time shielding them from the complexities of synchronization and tim-
ing. Capable of managing all the details involved with data transfers, manag-
ing events (interrupts), and reporting errors, ImageFlow keeps application
development time to a minimum and simplifies migration of application code
from one Datacube device to another.

The examples in this document provide a conceptual overview of pipeline
image processing using Datacube’s ImageFlow software. Considerably more
detailed information is available from Datacube, including the Datacube
ImageFlow Programmer’s Manual, part of the standard ImageFlow software
documentation set. Datacube also offers technical training on a variety of
levels:

• Introduction to Image Processing is a non-Datacube specific course that
covers the basics of digital image processing.

• Newcomers to Datacube and/or pipeline image processing are encourage
to get hands-on experience by attending Introduction to ImageFlow Using
the MaxVideo 200/250.

• Advanced Topics in ImageFlow Using the MaxVideo 200/250 provides
experienced ImageFlow programmers with the advanced information they
need take advantage of ImageFlow’s more sophisticated capabilities.

Contact a Datacube Sales Representative at 978-777-4200 to enroll in a
course or to request more information.

Datacube, Inc. • Rosewood Drive • Danvers, MA 01923 • Voice 978-777-4200 • Fax 978-777-3117
http://www.datacube.com • info@datacube.com

D A T A C U B E

